论文标题
在顶部学习:回归对电子相关的真实空间可视化的顶部对密度
Learning on-top: regressing the on-top pair density for real-space visualization of electron correlation
论文作者
论文摘要
顶对密度[$π(\ MATHRM {\ MATHBF {r}})$]是一种局部量子化学属性,反映了任何旋转两个电子的概率以占据相同的位置。作为与两粒子密度矩阵相关的最简单数量,顶对密度是电子相关效应的强大指标,因此,它已被广泛用于结合密度功能理论和多段波函数理论。 $π(\ mathrm {\ mathbf {r}})$的广泛应用程序因其准确的评估而需要进行hartree- fock或多段计算的需要而阻碍。在这项工作中,我们提出了一个机器学习模型的构建,该模型能够仅根据其结构和组成来预测分子的CASSCF质量对成对的密度。我们在GDB11-AD-3165数据库中受过训练的模型能够以最小的误差预测有机分子的顶对对密度,从而完全绕过了对$ \ textit {ab ab intio} $计算的需求。回归的准确性是使用对顶部比例作为电子相关效应和实际空间中键键的视觉度量的。此外,我们报告了专门基础集的构建,该集合构建是为了在一个以原子为中心的扩展中适合顶对对密度。这种基础,即回归的基石,也可以在电子密度的确定性近似方面具有相同的精神。
The on-top pair density [$Π(\mathrm{\mathbf{r}})$] is a local quantum-chemical property that reflects the probability of two electrons of any spin to occupy the same position in space. Being the simplest quantity related to the two-particle density matrix, the on-top pair density is a powerful indicator of electron correlation effects, and as such, it has been extensively used to combine density functional theory and multireference wavefunction theory. The widespread application of $Π(\mathrm{\mathbf{r}})$ is currently hindered by the need for post-Hartree--Fock or multireference computations for its accurate evaluation. In this work, we propose the construction of a machine learning model capable of predicting the CASSCF-quality on-top pair density of a molecule only from its structure and composition. Our model, trained on the GDB11-AD-3165 database, is able to predict with minimal error the on-top pair density of organic molecules, bypassing completely the need for $\textit{ab initio}$ computations. The accuracy of the regression is demonstrated using the on-top ratio as a visual metric of electron correlation effects and bond-breaking in real-space. In addition, we report the construction of a specialized basis set, built to fit the on-top pair density in a single atom-centered expansion. This basis, cornerstone of the regression, could be potentially used also in the same spirit of the resolution-of-the-identity approximation for the electron density.