论文标题
火星 - 埃及:一个健身房框架,用于建模,训练和评估市场的推荐系统
MARS-Gym: A Gym framework to model, train, and evaluate Recommender Systems for Marketplaces
论文作者
论文摘要
推荐系统对市场特别具有挑战性,因为它们必须在保持此类生态系统的健康和公平性的同时最大程度地提高用户满意度。在这种情况下,我们观察到缺乏设计,训练和评估通过在这些环境中进行互动的代理商的资源。为此,我们提出了Mars-Gym,这是一个开源框架,旨在使研究人员和工程师能够快速建立和评估市场中建议的强化学习剂。 MARS-GYM解决了整个开发管道:数据处理,模型设计和优化以及多边评估。我们还提供了各种基线代理的实施,并在Trivago Marketplace数据集中对它们进行了指标驱动的分析,以说明如何使用可用的建议,非电价估计和公平性的可用指标进行整体评估。借助Mars-Gym,我们希望弥合学术研究和生产系统之间的差距,并促进新算法和应用的设计。
Recommender Systems are especially challenging for marketplaces since they must maximize user satisfaction while maintaining the healthiness and fairness of such ecosystems. In this context, we observed a lack of resources to design, train, and evaluate agents that learn by interacting within these environments. For this matter, we propose MARS-Gym, an open-source framework to empower researchers and engineers to quickly build and evaluate Reinforcement Learning agents for recommendations in marketplaces. MARS-Gym addresses the whole development pipeline: data processing, model design and optimization, and multi-sided evaluation. We also provide the implementation of a diverse set of baseline agents, with a metrics-driven analysis of them in the Trivago marketplace dataset, to illustrate how to conduct a holistic assessment using the available metrics of recommendation, off-policy estimation, and fairness. With MARS-Gym, we expect to bridge the gap between academic research and production systems, as well as to facilitate the design of new algorithms and applications.