论文标题
关于集体成绩排名不足的问题
On the Problem of Underranking in Group-Fair Ranking
论文作者
论文摘要
搜索和推荐系统,例如搜索引擎,招聘工具,在线市场,新闻和社交媒体,内容,产品,有时甚至是人的输出排名列表。信用等级,标准化测试,风险评估的输出仅分数,但也被隐式用于排名。这种排名系统的偏见,尤其是在最高排名中,可能会使社会和经济不平等,两极分化观点并加强刻板印象。另一方面,如果被认为是群体 - 实现的结果而不是精英统治,对少数群体的偏见纠正可能会造成更大的伤害。在本文中,我们提出了在群体成绩排名中排出的问题,这在先前的工作中没有解决。大多数集体最高排名算法后处理给定的排名并输出集团 - fair排名。我们根据每个项目的群体成绩排名的距离定义了底层,并证明对同时在排名中同时底层和群体公平性达到的权衡方面是较低的界限。我们给出了一种公平的排名算法,该算法采用任何给定的排名,并在同时置入底层和集体公平性的同时提供与我们证明的下限相当的同时排名。我们的算法适用于任何数量的组的组公平约束。我们的实验结果证实了底漆和群体公平之间的理论权衡,还表明,与最先进的基线相比,我们的算法在两者中都达到了最好的折衷。
Search and recommendation systems, such as search engines, recruiting tools, online marketplaces, news, and social media, output ranked lists of content, products, and sometimes, people. Credit ratings, standardized tests, risk assessments output only a score, but are also used implicitly for ranking. Bias in such ranking systems, especially among the top ranks, can worsen social and economic inequalities, polarize opinions, and reinforce stereotypes. On the other hand, a bias correction for minority groups can cause more harm if perceived as favoring group-fair outcomes over meritocracy. In this paper, we formulate the problem of underranking in group-fair rankings, which was not addressed in previous work. Most group-fair ranking algorithms post-process a given ranking and output a group-fair ranking. We define underranking based on how close the group-fair rank of each item is to its original rank, and prove a lower bound on the trade-off achievable for simultaneous underranking and group fairness in ranking. We give a fair ranking algorithm that takes any given ranking and outputs another ranking with simultaneous underranking and group fairness guarantees comparable to the lower bound we prove. Our algorithm works with group fairness constraints for any number of groups. Our experimental results confirm the theoretical trade-off between underranking and group fairness, and also show that our algorithm achieves the best of both when compared to the state-of-the-art baselines.