论文标题

关于二级K3表面的模量空间的GHKS紧凑

On the GHKS compactification of the moduli space of K3 surfaces of degree two

论文作者

Hulek, Klaus, Lehn, Christian, Liese, Carsten

论文摘要

我们研究了$ 2 $ $ 2 $的K3表面模量空间的环形压实,该计划源自Gross-Hacking-Keel-Siebert的计划。该结构使用多尔加切夫(Dolgachev)的镜子对称性和镜子家族的异性几何形状。我们的主要结果是分析复曲面风扇。为此,我们使用了我们两个人在上一篇论文中开发的方法。

We investigate a toroidal compactification of the moduli space of K3 surfaces of degree $2$ originating from the program formulated by Gross-Hacking-Keel-Siebert. This construction uses Dolgachev's formulation of mirror symmetry and the birational geometry of the mirror family. Our main result in an analysis of the toric fan. For this we use the methods developed by two of us in a previous paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源