论文标题
从地理自由文本中自动提取城市户外感知
Automatic Extraction of Urban Outdoor Perception from Geolocated Free-Texts
论文作者
论文摘要
人们在基于位置的社交网络(LBSN)上共享的城市感知自动提取是一个重要的多学科研究目标。原因之一是因为它以可扩展的方式促进了对城市地区的内在特征的理解,从而有助于利用新服务。但是,在LBSN上共享的内容是多种多样的,包括政治,体育,文化,宗教和城市看法等几个主题,使有关特定主题的内容提取的任务非常具有挑战性。考虑在LBSN上共享的自由文本消息,我们提出了一种自动且通用的方法来提取人们的看法。为此,我们的方法探讨了时空和语义相似的观点。我们在芝加哥,纽约市和伦敦的城市户外地区的背景下体现了我们的方法。在研究这些领域时,我们发现证据表明LBSN数据带来了有关城市地区的宝贵信息。为了分析和验证我们的结果,我们进行了时间分析,以测量结果随时间的鲁棒性。我们表明,我们的方法有助于更好地理解考虑不同观点的城市地区。我们还基于公共数据集进行了比较分析,该数据包含志愿者对受控实验中表达的城市地区的看法。我们观察到,这两个结果都产生了非常相似的一致性。
The automatic extraction of urban perception shared by people on location-based social networks (LBSNs) is an important multidisciplinary research goal. One of the reasons is because it facilitates the understanding of the intrinsic characteristics of urban areas in a scalable way, helping to leverage new services. However, content shared on LBSNs is diverse, encompassing several topics, such as politics, sports, culture, religion, and urban perceptions, making the task of content extraction regarding a particular topic very challenging. Considering free-text messages shared on LBSNs, we propose an automatic and generic approach to extract people's perceptions. For that, our approach explores opinions that are spatial-temporal and semantically similar. We exemplify our approach in the context of urban outdoor areas in Chicago, New York City and London. Studying those areas, we found evidence that LBSN data brings valuable information about urban regions. To analyze and validate our outcomes, we conducted a temporal analysis to measure the results' robustness over time. We show that our approach can be helpful to better understand urban areas considering different perspectives. We also conducted a comparative analysis based on a public dataset, which contains volunteers' perceptions regarding urban areas expressed in a controlled experiment. We observe that both results yield a very similar level of agreement.