论文标题

Butson完整的推出代码

Butson full propelinear codes

论文作者

Armario, José Andrés, Bailera, Ivan, Egan, Ronan

论文摘要

在本文中,我们研究了Butson Hadamard矩阵,以及以对数形式的这些矩阵(称为BH-codes)的有限环的编码。我们通过对数形式的矩阵介绍了Butson Hadamard矩阵的新形态,这与最近关于ÓCatháin和Swartz的词语中给出的形态相媲美。也就是说,我们表明,如果给出了$ k^{\ rm th} $ Unity的Butson Hadamard矩阵,我们可以在$ \ ell^{\ rm th} $ unity上构建一个更大的Butson Matrix,以提供任何$ \ ell $ k $ k $的$ p $ p $ k $ k $ gul divide $ ell undies $ k $ g。 我们证明了$ \ mathbb {z} _ {p^s} $ - 带有$ p $的添加代码,质量数字是同构的,作为$ \ m \ m mathbb {z} _ {p^s} $的bh-code的组,该bh代码在灰色地图下的图像,$ bh code是$ \ math code of $ \ math BBB { $ P = 2 $)。此外,我们研究了当Butson矩阵是Cocyclic时,我们研究了这些代码(及其图像)的固有的推进结构。研究了这些代码的某些结构特性,并提供了示例。

In this paper we study Butson Hadamard matrices, and codes over finite rings coming from these matrices in logarithmic form, called BH-codes. We introduce a new morphism of Butson Hadamard matrices through a generalized Gray map on the matrices in logarithmic form, which is comparable to the morphism given in a recent note of Ó Catháin and Swartz. That is, we show how, if given a Butson Hadamard matrix over the $k^{\rm th}$ roots of unity, we can construct a larger Butson matrix over the $\ell^{\rm th}$ roots of unity for any $\ell$ dividing $k$, provided that any prime $p$ dividing $k$ also divides $\ell$. We prove that a $\mathbb{Z}_{p^s}$-additive code with $p$ a prime number is isomorphic as a group to a BH-code over $\mathbb{Z}_{p^s}$ and the image of this BH-code under the Gray map is a BH-code over $\mathbb{Z}_p$ (binary Hadamard code for $p=2$). Further, we investigate the inherent propelinear structure of these codes (and their images) when the Butson matrix is cocyclic. Some structural properties of these codes are studied and examples are provided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源