论文标题
通过拓扑捕获随时间变化数据的动态
Capturing Dynamics of Time-Varying Data via Topology
论文作者
论文摘要
理解复杂数据的一种方法是通过代数拓扑的角度研究其形状。尽管拓扑数据分析的早期开发主要集中在静态数据上,但近年来,理论和应用研究已转向随时间变化的数据。随着时间变化的公制空间的集合,例如,通过移动的鱼类或鸟类群,可以包含大量信息。通常需要简化或总结动态行为。我们提供了包括葡萄园[19],Crocker图[56]和多参数级函数[37]在内的时变度空间的拓扑摘要介绍。然后,我们引入了一个新工具来总结时变的度量空间:Crocker堆栈。 Crocker堆栈很方便可视化,可容纳机器学习,并满足我们证明的理想的连续性属性。我们证明了Crocker堆栈的实用性,用于参数识别任务,该任务涉及有影响力的生物聚集模型[58]。总的来说,我们旨在将更广泛的应用数学社区最新,以时变的度量空间的拓扑摘要。
One approach to understanding complex data is to study its shape through the lens of algebraic topology. While the early development of topological data analysis focused primarily on static data, in recent years, theoretical and applied studies have turned to data that varies in time. A time-varying collection of metric spaces as formed, for example, by a moving school of fish or flock of birds, can contain a vast amount of information. There is often a need to simplify or summarize the dynamic behavior. We provide an introduction to topological summaries of time-varying metric spaces including vineyards [19], crocker plots [56], and multiparameter rank functions [37]. We then introduce a new tool to summarize time-varying metric spaces: a crocker stack. Crocker stacks are convenient for visualization, amenable to machine learning, and satisfy a desirable continuity property which we prove. We demonstrate the utility of crocker stacks for a parameter identification task involving an influential model of biological aggregations [58]. Altogether, we aim to bring the broader applied mathematics community up-to-date on topological summaries of time-varying metric spaces.