论文标题

激光辅助溶液合成高性能石墨烯支持的电催化剂

Laser Assisted Solution Synthesis of High Performance Graphene Supported Electrocatalysts

论文作者

Peng, Yudong, Cao, Jianyun, Yang, Jie, Yang, Wenji, Zhang, Chao, Li, Xiaohong, Dryfe, Robert A. W., Li, Lin, Kinloch, Ian A., Liu, Zhu

论文摘要

需要简单但多才多艺的方法,可以用金属(氧化物)纳米颗粒功能化石墨烯片,尤其是对于晚期催化剂的开发。在此基于光诱导的电化学基于激光辅助,连续的溶液途径,以同时还原和修饰氧化石墨烯与催化纳米颗粒。电化学石墨烯氧化物(EGO)由于其低氧化程度而用作起始材料和电子孔对源,从而赋予结构完整性和承受光降解的能力。只需用248 nm波长激光器照亮含有自我和金属盐(例如H2PTCL6或RUCL3)的溶液流就会产生降低的自我(Rego,氧含量4.0 at%)片,并用Pt(〜2.0 nm)或RUO2(〜2.8 nm)纳米颗粒装饰。 RUO2-Rego薄片表现出对氧气进化反应的优质催化活性,需要小势为225 mV才能达到10 mA CM-2的电流密度。与20 wt%PT/C催化剂相比,PT-Rego薄片(PT的10.2 wt%)显示出氢进化反应的质量活性增强,氧还原反应的性能相似。这种简单的生产方法还用于将PTPD合金和MNOX纳米颗粒沉积在Rego上,证明其在合成功能性纳米粒子修饰的石墨烯材料中的多功能性。

Simple, yet versatile, methods to functionalize graphene flakes with metal (oxide) nanoparticles are in demand, particularly for the development of advanced catalysts. Herein, based on light-induced electrochemistry, a laser-assisted, continuous, solution route for the simultaneous reduction and modification of graphene oxide with catalytic nanoparticles is reported. Electrochemical graphene oxide (EGO) is used as starting material and electron-hole pair source due to its low degree of oxidation, which imparts structural integrity and an ability to withstand photodegradation. Simply illuminating a solution stream containing EGO and metal salt (e.g., H2PtCl6 or RuCl3) with a 248 nm wavelength laser produces reduced EGO (rEGO, oxygen content 4.0 at%) flakes, decorated with Pt (~2.0 nm) or RuO2 (~2.8 nm) nanoparticles. The RuO2-rEGO flakes exhibit superior catalytic activity for the oxygen evolution reaction, requiring a small overpotential of 225 mV to reach a current density of 10 mA cm-2. The Pt-rEGO flakes (10.2 wt% of Pt) show enhanced mass activity for the hydrogen evolution reaction, and similar performance for oxygen reduction reaction compared to a commercial 20 wt% Pt/C catalyst. This simple production method is also used to deposit PtPd alloy and MnOx nanoparticles on rEGO, demonstrating its versatility in synthesizing functional nanoparticle-modified graphene materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源