论文标题
星形星系的红外线相关性是强烈的m $ _ {\ star} $ - 依赖性,但由于z $ \ sim $ 4,但几乎是红移不变的
The infrared-radio correlation of star-forming galaxies is strongly M$_{\star}$-dependent but nearly redshift-invariant since z$\sim$4
论文作者
论文摘要
在过去的十年中,几项作品使用了恒星星系中的总(休息8-1000 $ $ m)和无线电(休息1.4〜GHz)的光度(Q $ _ {ir} $),通常称为“ Indrared-Radio相关性”(IRRC),以校准AS A-RADIO相关性”(IRRC),以校准无线电速率(STAR形成率)(S a Star Chortator(S a Star Choritator)(sfr)。先前的研究用红移限制了Q $ _ {ir} $的演变,发现轻度但显着下降,这尚待理解。我们首次校准Q $ _ {ir} $作为\ textit {act of textIt {两个}恒星质量(m $ _ {\ star} $)和redshift,从m $ _ {\ star} $开始0.1 $ <$ z $ <$ 4.5。在每个(m $ _ {\ star} $,z)bin中,我们堆叠了最深的红外/sub-mm和无线电图像。我们使用典型的星形星系和IR-AGN模板拟合堆叠的红外光谱分布,并通过递归方法小心地删除AGN候选者。我们发现IRRC主要以m $ _ {\ star} $进化,其中更大的星系在系统上显示较低的Q $ _ {ir} $。还观察到对红移的次要,较弱的依赖性。最合适的分析表达是以下: q $ _ {ir} $(m $ _ {\ star} $,z)=(2.646 $ \ pm $ 0.024)$ \ times $(1+z)$^{( - 0.023 \ pm 0.008)} $ - (0.148 $ \ pm $ 0.013)$ \ times $($ \ log〜m _ {\ star} $/m $ _ {\ odot} $ 10)。在更大的星系中看到的较低的IR/无线电比通过其较高观察到的SFR表面密度很好地描述了。我们的发现强调,使用无线电同步发射作为SFR的代理需要新颖的M $ _ {\ star} $ - 依赖的食谱,这将使我们能够将未来的超深无线电调查中的检测转换为准确的SFR测量值,以下是低sfr,低-SFR,低M $ _ {\ star {\ star} $ Galaxies。
Several works in the past decade have used the ratio between total (rest 8-1000$μ$m) infrared and radio (rest 1.4~GHz) luminosity in star-forming galaxies (q$_{IR}$), often referred to as the "infrared-radio correlation" (IRRC), to calibrate radio emission as a star formation rate (SFR) indicator. Previous studies constrained the evolution of q$_{IR}$ with redshift, finding a mild but significant decline, that is yet to be understood. For the first time, we calibrate q$_{IR}$ as a function of \textit{both} stellar mass (M$_{\star}$) and redshift, starting from an M$_{\star}$-selected sample of $>$400,000 star-forming galaxies in the COSMOS field, identified via (NUV-r)/(r-J) colours, at redshifts 0.1$<$z$<$4.5. Within each (M$_{\star}$,z) bin, we stack the deepest available infrared/sub-mm and radio images. We fit the stacked IR spectral energy distributions with typical star-forming galaxy and IR-AGN templates, and carefully remove radio AGN candidates via a recursive approach. We find that the IRRC evolves primarily with M$_{\star}$, with more massive galaxies displaying systematically lower q$_{IR}$. A secondary, weaker dependence on redshift is also observed. The best-fit analytical expression is the following: q$_{IR}$(M$_{\star}$,z)=(2.646$\pm$0.024)$\times$(1+z)$^{(-0.023\pm0.008)}$-(0.148$\pm$0.013)$\times$($\log~M_{\star}$/M$_{\odot}$-10). The lower IR/radio ratios seen in more massive galaxies are well described by their higher observed SFR surface densities. Our findings highlight that using radio-synchrotron emission as a proxy for SFR requires novel M$_{\star}$-dependent recipes, that will enable us to convert detections from future ultra deep radio surveys into accurate SFR measurements down to low-SFR, low-M$_{\star}$ galaxies.