论文标题

超冷的Stefan问题中的时间步变方案与自由边界的融合

Convergence of a time-stepping scheme to the free boundary in the supercooled Stefan problem

论文作者

Kaushansky, Vadim, Reisinger, Christoph, Shkolnikov, Mykhaylo, Song, Zhuo Qun

论文摘要

超冷的Stefan问题及其变体描述了物理学中超冷液体的冻结,以及金融和神经科学中全身风险模型的大型系统限制。众所周知,采用物理学术语,超冷的Stefan问题具有有限的时间爆炸,以释放液体中广泛的初始温度分布的冻结速率。这样的爆炸会导致液体固体边界的不连续性。在本文中,我们证明了自然欧拉的时间步变方案应用于超冷的Stefan问题的概率公式,在Skorokhod M1拓扑中,全球及时地将其物理溶液的液体固定边界收敛到其液体固定边界。在证明过程中,我们对时间步长方案的本地收敛速度进行了明确的限制。我们还运行数值测试,以将我们的理论结果与实际观察到的收敛行为进行比较。

The supercooled Stefan problem and its variants describe the freezing of a supercooled liquid in physics, as well as the large system limits of systemic risk models in finance and of integrate-and-fire models in neuroscience. Adopting the physics terminology, the supercooled Stefan problem is known to feature a finite-time blow-up of the freezing rate for a wide range of initial temperature distributions in the liquid. Such a blow-up can result in a discontinuity of the liquid-solid boundary. In this paper, we prove that the natural Euler time-stepping scheme applied to a probabilistic formulation of the supercooled Stefan problem converges to the liquid-solid boundary of its physical solution globally in time, in the Skorokhod M1 topology. In the course of the proof, we give an explicit bound on the rate of local convergence for the time-stepping scheme. We also run numerical tests to compare our theoretical results to the practically observed convergence behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源