论文标题
循环优势的异斜网络中螺旋波的数值延续
Numerical continuation of spiral waves in heteroclinic networks of cyclic dominance
论文作者
论文摘要
在偏微分方程的系统中,可能会出现杂斜诱导的螺旋波,这些系统在空间均匀的平衡之间表现出强大的异斜循环。在具有不变子空间的系统中,稳健的杂斜周期自然出现,其稳健性被认为是在保留这些不变的扰动方面。我们利用系统中的特定对称性来制定傅立叶空间中相对较低的空间两点边界值问题,该问题可以与数值延续一起有效地解决。标准的数值设置是在较小的内部半径的环上配制的,并且在内部和外部径向边界都使用了Neumann边界条件。我们得出并实现替代边界条件,使内部半径持续到零,从而在完整的磁盘上计算螺旋波。作为我们的主要例子,我们研究了杂斜诱导的螺旋波在反应扩散模型中的形成,该模型描述了在二维空间域中三个相互竞争的人群的时空演化 - 就像岩石纸胶圈游戏一样。我们进一步说明了我们方法在五个竞争物种之间较大的环状优势网络中的螺旋波的计算,该螺旋波的计算描述了所谓的岩石纸塞子 - 塞子 - 塞子游戏。
Heteroclinic-induced spiral waves may arise in systems of partial differential equations that exhibit robust heteroclinic cycles between spatially uniform equilibria. Robust heteroclinic cycles arise naturally in systems with invariant subspaces and their robustness is considered with respect to perturbations that preserve these invariances. We make use of particular symmetries in the system to formulate a relatively low-dimensional spatial two-point boundary-value problem in Fourier space that can be solved efficiently in conjunction with numerical continuation. The standard numerical set-up is formulated on an annulus with small inner radius, and Neumann boundary conditions are used on both inner and outer radial boundaries. We derive and implement alternative boundary conditions that allow for continuing the inner radius to zero and so compute spiral waves on a full disk. As our primary example, we investigate the formation of heteroclinic-induced spiral waves in a reaction-diffusion model that describes the spatiotemporal evolution of three competing populations in a two-dimensional spatial domain--much like the Rock-Paper-Scissors game. We further illustrate the efficiency of our method with the computation of spiral waves in a larger network of cyclic dominance between five competing species, which describes the so-called Rock-Paper-Scissors-Lizard-Spock game.