论文标题

某些图案矩阵的线性特征值统计的时间依赖性波动

Time dependent fluctuations of linear eigenvalue statistics of some patterned matrices

论文作者

Bose, Arup, Maurya, Shambhu Nath, Saha, Koushik

论文摘要

考虑$ n \ times n $反向循环$ rc_n(t)$和对称循环$ sc_n(t)$矩阵,带有独立的布朗尼运动条目。我们将这些矩阵线性特征值统计的时间依赖性波动的过程收敛为$ n \ tents \ infty $,当统计的测试函数是多项式时。这些证明主要是基于痕量公式,矩的方法和过程收敛的一些结果。

Consider the $n \times n$ reverse circulant $RC_n(t)$ and symmetric circulant $SC_n(t)$ matrices with independent Brownian motion entries. We discuss the process convergence of the time dependent fluctuations of linear eigenvalue statistics of these matrices as $n \tends \infty$, when the test functions of the statistics are polynomials. The proofs are mainly combinatorial, based on the trace formula, method of moments and some results on process convergence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源