论文标题
BESOV空间中FORQ方程的数据到解决图的连续性
Continuity of the data-to-solution map for the FORQ equation in Besov Spaces
论文作者
论文摘要
对于besov空间,$ b^s_ {p,r}(\ rr)$带有$ s> \ max \ {2 + \ frac1p,\ frac52 \} $,$ p \ in(1,\ infty] $和$ r \ in [1,\ infty)$ in [1,\ infty] $ and $ r \ in [1,\ infty)$ ins for subible for subistation for sorust for squipation soruse soruse quinust for Stibul for Stibous sorus quinust for Stibul un $ b^s_ {p,r}(\ rr)$ to $ c([0,t]; b^s_ {p,r}(\ rr))$。非均匀依赖性的证明是基于近似溶液和小伍德 - 斑点分解。
For Besov spaces $B^s_{p,r}(\rr)$ with $s>\max\{ 2 + \frac1p , \frac52\} $, $p \in (1,\infty]$ and $r \in [1 , \infty)$, it is proved that the data-to-solution map for the FORQ equation is not uniformly continuous from $B^s_{p,r}(\rr)$ to $C([0,T]; B^s_{p,r}(\rr))$. The proof of non-uniform dependence is based on approximate solutions and the Littlewood-Paley decomposition.