论文标题

通过共同体学代数的合理同副本类型的映射空间

Rational homotopy type of mapping spaces via cohomology algebras

论文作者

Xie, Sang, Liu, Jian, Liu, Xiugui

论文摘要

In this paper, we show that for finite $CW$-complexes $X$ and two-stage space $Y$ (for example $n$-spheres $S^n$, homogeneous spaces and $F_0$-spaces), the rational homotopy type of $\map(X, Y)$ is determined by the cohomology algebra $H^*(X; \Q)$ and the rational homotopy type of $ y $。从中,假设$ x $和$ y $的同构代数是同构的,我们将在映射空间$ \ map(x,y)$的组件上的成分上的存在。最后,如果相应的\ emph {maurer-cartan elements}通过$ h^\ ast(x,\ q)$连接,我们将证明$ \ map(x,y; f)\ simeq \ map(x,y; f')$。

In this paper, we show that for finite $CW$-complexes $X$ and two-stage space $Y$ (for example $n$-spheres $S^n$, homogeneous spaces and $F_0$-spaces), the rational homotopy type of $\map(X, Y)$ is determined by the cohomology algebra $H^*(X; \Q)$ and the rational homotopy type of $Y$. From this, we deduce the existence of H-structures on a component of the mapping space $\map(X, Y)$, assuming the cohomology algebras of $X$ and $Y$ are isomorphism. Finally, we will show that $\map(X, Y; f)\simeq\map(X, Y; f')$ if the corresponding \emph{Maurer-Cartan elements} are connected by an algebra automorphism of $H^\ast(X, \Q)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源