论文标题

与节点边缘共进的异质图上的元图注意

Meta Graph Attention on Heterogeneous Graph with Node-Edge Co-evolution

论文作者

Lin, Yucheng, Hong, Huiting, Yang, Xiaoqing, Yang, Xiaodi, Gong, Pinghua, Ye, Jieping

论文摘要

图神经网络已成为建模结构化数据的重要工具。在许多实际系统中,可能存在复杂的隐藏信息,例如,节点/边缘中的异质性,静态节点/边缘属性以及时空节点/边缘特征。但是,大多数现有方法仅考虑一部分信息。在本文中,我们介绍了共同进化的元图神经网络(COMGNN),该网络将元图注意应用于与节点和边缘状态共同进化的异质图。我们进一步提出了Comgnn(ST-COMGNN)的时空适应性,用于对节点和边缘的时空模式进行建模。我们在两个大型现实世界数据集上进行实验。实验结果表明,我们的模型大大优于最先进的方法,证明了从不同方面编码各种信息的有效性。

Graph neural networks have become an important tool for modeling structured data. In many real-world systems, intricate hidden information may exist, e.g., heterogeneity in nodes/edges, static node/edge attributes, and spatiotemporal node/edge features. However, most existing methods only take part of the information into consideration. In this paper, we present the Co-evolved Meta Graph Neural Network (CoMGNN), which applies meta graph attention to heterogeneous graphs with co-evolution of node and edge states. We further propose a spatiotemporal adaption of CoMGNN (ST-CoMGNN) for modeling spatiotemporal patterns on nodes and edges. We conduct experiments on two large-scale real-world datasets. Experimental results show that our models significantly outperform the state-of-the-art methods, demonstrating the effectiveness of encoding diverse information from different aspects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源