论文标题

使用Azzalini机制对几何分布进行新的概括:属性和应用

A new generalization of the geometric distribution using Azzalini's mechanism: properties and application

论文作者

Ong, Seng Huat, Chakraborty, Subrata, Biswas, Aniket

论文摘要

Azzalini用于连续分布的偏斜机制首次用于得出几何分布的新概括。研究了所提出的分布的各种结构特性。建立了根据建议的模型的特征,包括几何分布的新结果。进行广泛的仿真实验以评估最大似然估计方法的性能。得出了其他偏斜参数必要性的似然比测试,并报告了基于模拟的功率研究。用建议的模型分析了两个现实生活中的数据集,并与一些最近引入的两参数计数模型进行了比较。这些发现清楚地表明了所提出的模型比现有模型在建模现实生活计数数据中的优越性。

The skewing mechanism of Azzalini for continuous distributions is used for the first time to derive a new generalization of the geometric distribution. Various structural properties of the proposed distribution are investigated. Characterizations, including a new result for the geometric distribution, in terms of the proposed model are established. Extensive simulation experiment is done to evaluate performance of the maximum likelihood estimation method. Likelihood ratio test for the necessity of additional skewing parameter is derived and corresponding simulation based power study is also reported. Two real life count datasets are analyzed with the proposed model and compared with some recently introduced two-parameter count models. The findings clearly indicate the superiority of the proposed model over the existing ones in modelling real life count data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源