论文标题
ZRTE5中的dirac半学5
Photoinduced Dirac semimetal in ZrTe5
论文作者
论文摘要
物质的新阶段具有量子和拓扑保护的独特特性,这是现代研究的重要作用。特别有趣的是,使用超快速外部刺激(例如Photexcitation)按需设计这些阶段,该刺激的前景将它们集成到未来的设备与光学通信和信息技术兼容的设备。在这里,我们使用MEV Ultrafast电子衍射(UED)来展示如何在拓扑绝缘子zrte $ _5 $中通过飞秒激光脉冲诱导瞬态三维(3D)DIRAC半学状态。我们观察到Bragg衍射的明显变化,这是光诱导状态中键失真的特征。使用从UED提炼的原子位置,我们对电子带结构进行密度功能理论(DFT)分析。我们的结果表明,Zrte $ _5 $的平衡状态是一种拓扑绝缘子,其小带隙为$ \ sim $ 25 MEV,与角度分辨光发射(ARPES)实验一致。然而,在光诱导的瞬态状态下存在强旋轨耦合(SOC)的情况下,差距是封闭的,手性带结构中出现了无质量的乳汁费米子。放松动力学到瞬态狄拉克半学状态的时间尺度非常长,$τ\ sim $ 160 PS,这比传统的声子驱动的结构放松长两个数量级。长松弛与狄拉克频谱中状态的消失密度以及伴随迪拉克·费米斯(Dirac Fermions)出现的SOC控制带结构的慢速自旋 - 固定化一致。
Novel phases of matter with unique properties that emerge from quantum and topological protection present an important thrust of modern research. Of particular interest is to engineer these phases on demand using ultrafast external stimuli, such as photoexcitation, which offers prospects of their integration into future devices compatible with optical communication and information technology. Here, we use MeV Ultrafast Electron Diffraction (UED) to show how a transient three-dimensional (3D) Dirac semimetal state can be induced by a femtosecond laser pulse in a topological insulator ZrTe$_5$. We observe marked changes in Bragg diffraction, which are characteristic of bond distortions in the photoinduced state. Using the atomic positions refined from the UED, we perform density functional theory (DFT) analysis of the electronic band structure. Our results reveal that the equilibrium state of ZrTe$_5$ is a topological insulator with a small band gap of $\sim$25 meV, consistent with angle-resolved photoemission (ARPES) experiments. However, the gap is closed in the presence of strong spin-orbit coupling (SOC) in the photoinduced transient state, where massless Dirac fermions emerge in the chiral band structure. The time scale of the relaxation dynamics to the transient Dirac semimetal state is remarkably long, $τ\sim$160 ps, which is two orders of magnitude longer than the conventional phonon-driven structural relaxation. The long relaxation is consistent with the vanishing density of states in Dirac spectrum and slow spin-repolarization of the SOC-controlled band structure accompanying the emergence of Dirac fermions.