论文标题
规定的3个manifolds的虚拟同源扭转
Prescribed virtual homological torsion of 3-manifolds
论文作者
论文摘要
我们证明,鉴于任何有限的Abelian Group $ a $和任何不可约3 $ -Manifold $ m $带有空或环形边界,这不是图形的歧管,因此存在有限的封面$ M'\ to m $,因此$ a $是$ h_1(m',m',\ nathbb {z})的直接因素。这概括了太阳和弗里德尔·赫尔曼的结果。
We prove that given any finite abelian group $A$ and any irreducible $3$-manifold $M$ with empty or toroidal boundary which is not a graph manifold there exists a finite cover $M' \to M$ so that $A$ is a direct factor in $H_1(M',\mathbb{Z})$. This generalizes results of Sun and of Friedl-Herrmann.