论文标题

Parkland创伤死亡率指数(PTIM):多发性瘤患者的实时预测模型

Parkland Trauma Index of Mortality (PTIM): Real-time Predictive Model for PolyTrauma Patients

论文作者

Starr, Adam J., Julka, Manjula, Nethi, Arun, Watkins, John D., Fairchild, Ryan W., Cripps, Michael W., Rinehart, Dustin, Box, Hayden N.

论文摘要

生命体征和实验室值通常用于指导多发性疾病患者的临床决策,例如决定使用损伤控制技术与早期确定性断裂固定的决定。先前的多元模型试图预测死亡率风险,但是由于诸如入院时一次性预测(例如一次性预测),它们在临床上没有证明。需要一个动态模型,该模型捕获患者医院课程中不断发展的生理变化,以进行创伤和复苏以进行死亡率预测。 Parkland创伤死亡率指数(PTIM)是一种机器学习算法,该算法使用电子病历(EMR)数据来预测前72美元的住院$ 48- $小时死亡率。该模型每小时都会更新,随着患者对创伤的生理反应而发展。使用(AUC)下的接收器特征曲线(ROC),灵敏度,特异性,正(PPV)和负预测值(NPV)以及正和负有可能性比(LR)的面积来评估模型性能。通过随患者对创伤的生理反应而发展并仅依靠EMR数据,PTIM克服了先前死亡风险模型的许多局限性。它可能是一种有用的工具,可以在住院早期为多曲菌患者提供临床决策。

Vital signs and laboratory values are routinely used to guide clinical decision-making for polytrauma patients, such as the decision to use damage control techniques versus early definitive fracture fixation. Prior multivariate models have tried to predict mortality risk, but due to several limitations like one-time prediction at the time of admission, they have not proven clinically useful. There is a need for a dynamic model that captures evolving physiologic changes during patient's hospital course to trauma and resuscitation for mortality prediction. The Parkland Trauma Index of Mortality (PTIM) is a machine learning algorithm that uses electronic medical record (EMR) data to predict $48-$hour mortality during the first $72$ hours of hospitalization. The model updates every hour, evolving with the patient's physiologic response to trauma. Area under (AUC) the receiver-operator characteristic curve (ROC), sensitivity, specificity, positive (PPV) and negative predictive value (NPV), and positive and negative likelihood ratios (LR) were used to evaluate model performance. By evolving with the patient's physiologic response to trauma and relying only on EMR data, the PTIM overcomes many of the limitations of prior mortality risk models. It may be a useful tool to inform clinical decision-making for polytrauma patients early in their hospitalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源