论文标题

通过深度学习的生活方式视频监视的可重新配置的网络物理系统

Reconfigurable Cyber-Physical System for Lifestyle Video-Monitoring via Deep Learning

论文作者

Deniz, Daniel, Barranco, Francisco, Isern, Juan, Ros, Eduardo

论文摘要

室内对家中人员的监视已成为智能健康方面的流行应用。随着嵌入式设备的机器学习和硬件的进步,启用了网络物理系统(CPS)的新分布式方法。同样,改变环境和降低成本的需求激发了新颖的可重构CPS体系结构。在这项工作中,我们提出了使用嵌入式本地节点(NVIDIA JETSON TX2)的室内监视可重构CPS。我们嵌入了深度学习体系结构以解决人类的行动识别。在这些节点上的本地处理使我们可以解决一些常见问题:减少数据带宽使用和保存隐私(没有传输原始图像)。同样可以实时处理,因为优化节点仅计算其本地视频提要。关于重新配置,远程平台监视CPS质量和质量和资源管理(QRM)工具将命令发送到CPS核心,以触发其重新配置。我们的建议是一种能源感知系统,该系统基于电池动力节点的能源消耗触发重新配置。重新配置最多可降低22%的本地节点能源消耗,以延长设备的运行时间,并在没有重新配置的情况下保持相似的替代方案的准确性。

Indoor monitoring of people at their homes has become a popular application in Smart Health. With the advances in Machine Learning and hardware for embedded devices, new distributed approaches for Cyber-Physical Systems (CPSs) are enabled. Also, changing environments and need for cost reduction motivate novel reconfigurable CPS architectures. In this work, we propose an indoor monitoring reconfigurable CPS that uses embedded local nodes (Nvidia Jetson TX2). We embed Deep Learning architectures to address Human Action Recognition. Local processing at these nodes let us tackle some common issues: reduction of data bandwidth usage and preservation of privacy (no raw images are transmitted). Also real-time processing is facilitated since optimized nodes compute only its local video feed. Regarding the reconfiguration, a remote platform monitors CPS qualities and a Quality and Resource Management (QRM) tool sends commands to the CPS core to trigger its reconfiguration. Our proposal is an energy-aware system that triggers reconfiguration based on energy consumption for battery-powered nodes. Reconfiguration reduces up to 22% the local nodes energy consumption extending the device operating time, preserving similar accuracy with respect to the alternative with no reconfiguration.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源