论文标题
椭圆运算符的最佳泊松内核定期性具有Hölder连续系数,在消失的和弦 - arc域中
Optimal Poisson kernel regularity for elliptic operators with Hölder-continuous coefficients in vanishing chord-arc domains
论文作者
论文摘要
我们表明,如果$ω$是一个消失的和弦arc域,而$ l $是带有hölder-con-continul系数矩阵的分发式椭圆算子,则是vmo $中的$ \ log k_l \,其中$ k_l $是$ liptic kernel in the domain $ umain $ω$。在拉普拉斯(Laplacian)的情况下,这扩展了Kenig和Toro的先前工作。
We show that if $Ω$ is a vanishing chord-arc domain and $L$ is a divergence-form elliptic operator with Hölder-continuous coefficient matrix, then $\log k_L \in VMO$, where $k_L$ is the elliptic kernel for $L$ in the domain $Ω$. This extends the previous work of Kenig and Toro in the case of the Laplacian.