论文标题
一阶转导数的结构特性
Structural properties of the first-order transduction quasiorder
论文作者
论文摘要
逻辑转导提供了一个非常有用的工具,可以编码其他类别的结构中的结构类。在本文中,我们研究了一阶(FO)的跨传输及其在无限类别的有限图中诱导的测序者。令人惊讶的是,该Quasiorder非常复杂,尽管由一阶逻辑的局部性构成。这与Monadic二阶(MSO)转导测序的猜想的简单性形成对比。 我们首先建立了具有独立利益的FO转导的局部正常形式。然后,我们证明商部分订单是一个有界的分布式联接 - 隔离式,并且\ emph {addive}类的子框也是有界的分布连接 - 隔离式 - 隔离。 FO转导的Quasiorder具有很大的表达能力,并且可以使用它来定义许多经过良好研究的类属性。我们应用这些结构性特性来证明,除其他结果外,路径类别的转变完全是具有有界带宽的类的班级的扰动,即元素稳定性和依赖性的局部变体等效于其(标准的)非局部版本,并且在$ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ k $ s的类别上等同。 Quasiorder。
Logical transductions provide a very useful tool to encode classes of structures inside other classes of structures. In this paper we study first-order (FO) transductions and the quasiorder they induce on infinite classes of finite graphs. Surprisingly, this quasiorder is very complex, though shaped by the locality properties of first-order logic. This contrasts with the conjectured simplicity of the monadic second order (MSO) transduction quasiorder. We first establish a local normal form for FO transductions, which is of independent interest. Then we prove that the quotient partial order is a bounded distributive join-semilattice, and that the subposet of \emph{additive} classes is also a bounded distributive join-semilattice. The FO transduction quasiorder has a great expressive power, and many well studied class properties can be defined using it. We apply these structural properties to prove, among other results, that FO transductions of the class of paths are exactly perturbations of classes with bounded bandwidth, that the local variants of monadic stability and monadic dependence are equivalent to their (standard) non-local versions, and that the classes with pathwidth at most $k$, for $k\geq 1$ form a strict hierarchy in the FO transduction quasiorder.