论文标题

连贯的施普林格理论和分类deligne-langlands对应

Coherent Springer theory and the categorical Deligne-Langlands correspondence

论文作者

Ben-Zvi, David, Chen, Harrison, Helm, David, Nadler, David

论文摘要

卡兹丹(Kazhdan)和卢斯蒂格(Lusztig)确定了史坦伯格(Steinberg Iwahori固定矢量。我们将来自派生的代数几何形状的技术从$ k $ - 理论传递给Hochschild同源性,从而将$ \ Mathcal {h} $与一个连贯的edeaft骨上的相干纱堆在Unipotent Langlands参数(Coherent Langlands参数)上,Cooherent Springer Sheeaf中识别出$ \ Mathcal {H} $。结果,$ \ mathcal {h} $ - 模块的派生类别被实现为该堆栈上连贯的束带的完整子类别,证实了当地兰兰兹当地的强烈形式的期望(包括最近的猜想,包括Fargues-Scholze,Sholmann和Zhu)。 在通用线性组的情况下,我们的结果使我们能够将本地的Langlands分类不可减至的表示:我们构建了$ \ mathrm {gl} _n(f)$的平滑表示的派生类别的完整嵌入到Langlands parameters的堆栈中的相干安全带中。

Kazhdan and Lusztig identified the affine Hecke algebra $\mathcal{H}$ with an equivariant $K$-group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields $F$ with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from $K$-theory to Hochschild homology and thereby identify $\mathcal{H}$ with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, the coherent Springer sheaf. As a result the derived category of $\mathcal{H}$-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of $\mathrm{GL}_n(F)$ into coherent sheaves on the stack of Langlands parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源