论文标题
Mimosa:用于分子优化的多约束分子采样
MIMOSA: Multi-constraint Molecule Sampling for Molecule Optimization
论文作者
论文摘要
分子优化是加速药物发现的基本任务,其目的是产生新的有效分子,可最大程度地提高多种药物特性,同时保持与输入分子相似。现有的生成模型和强化学习方法取得了最初的成功,但在同时优化多种药物特性方面仍然面临困难。为了应对此类挑战,我们提出了多约束分子采样(MIMOSA)方法,这是一种采样框架,将输入分子用作目标分布的初始猜测和采样分子。 Mimosa首先预测了两个用于分子拓扑结构和子结构类型预测的属性不可知的图形神经网络(GNNS),其中子结构可以是原子或单个环。对于每次迭代,Mimosa都使用GNNS的预测,并采用三个基本的子结构操作(添加,替换,删除)来生成新的分子和相关的权重。权重可以编码多个约束,包括相似性和药物特性约束,我们在其上为下一个迭代选择有希望的分子。 Mimosa可以灵活地编码多个属性和相似性约束,并可以有效地生成满足各种属性约束的新分子,并且在成功率方面,相对于最佳基线的相对相对改善高达49.6%。可以使用代码存储库(包括README文件,数据预处理和模型构建,评估)https://github.com/futianfan/mimosa。
Molecule optimization is a fundamental task for accelerating drug discovery, with the goal of generating new valid molecules that maximize multiple drug properties while maintaining similarity to the input molecule. Existing generative models and reinforcement learning approaches made initial success, but still face difficulties in simultaneously optimizing multiple drug properties. To address such challenges, we propose the MultI-constraint MOlecule SAmpling (MIMOSA) approach, a sampling framework to use input molecule as an initial guess and sample molecules from the target distribution. MIMOSA first pretrains two property agnostic graph neural networks (GNNs) for molecule topology and substructure-type prediction, where a substructure can be either atom or single ring. For each iteration, MIMOSA uses the GNNs' prediction and employs three basic substructure operations (add, replace, delete) to generate new molecules and associated weights. The weights can encode multiple constraints including similarity and drug property constraints, upon which we select promising molecules for next iteration. MIMOSA enables flexible encoding of multiple property- and similarity-constraints and can efficiently generate new molecules that satisfy various property constraints and achieved up to 49.6% relative improvement over the best baseline in terms of success rate. The code repository (including readme file, data preprocessing and model construction, evaluation) is available https://github.com/futianfan/MIMOSA.