论文标题
磁旋转超新星中的核合成
Nucleosynthesis in magneto-rotational supernovae
论文作者
论文摘要
我们首次基于具有准确的中微子转运的2D模拟,介绍了基于中微子驱动的和磁旋转驱动的射流的磁旋转超新星(MR-SNE)的核合成。这里分析的模型具有不同的旋转和磁场,使我们能够探索这两种关键成分的影响。模拟的准确中微子转运对于分析与标准超新星中中微子驱动的弹射器相似的略有中子和富含质子的喷射至关重要。在具有强磁场的模型中,R-Process与以前的作品一致,直至第三R-Process Peak($ A \ SIM 195 $)的重型元素($ a \ sim 195 $)。该模型带有喷气状爆炸,带有质子富含质子的喷气式,并在R-Process发生的情况下包围着富含中子的材料。我们估计$^{56} $ ni的下限为$ 2.5 \ times10^{ - 2} m_ \ odot $,该$仍远低于预期的Hypernova值。需要更长的模拟,包括积聚圆盘演化才能获得最终预测。此外,我们发现晚期进化在具有弱磁场的模型中至关重要,在该模型中,晚期发射的中子物质会产生直到第二个R过程峰的元素。即使我们还不能为超氮核合成的结论提供结论,我们的结果也与超新星残留物中旧恒星和放射性同位素的观察一致。这使得先生成为中性星合并的良好情况,可以使我们更加了解它们的起源和Snne先生在早期星系核合成中的作用。
We present the nucleosynthesis of magneto-rotational supernovae (MR-SNe) including neutrino-driven and magneto-rotational-driven ejecta based, for the first time, on 2D simulations with accurate neutrino transport. The models analysed here have different rotation and magnetic fields, allowing us to explore the impact of these two key ingredients. The accurate neutrino transport of the simulations is critical to analyse the slightly neutron-rich and proton-rich ejecta that are similar to the, also neutrino-driven, ejecta in standard supernovae. In the model with strong magnetic field, the r-process produces heavy elements up to the third r-process peak ($A\sim 195$), in agreement with previous works. This model presents a jet-like explosion with proton-rich jets surrounded by neutron-rich material where the r-process occurs. We have estimated a lower limit for $^{56}$Ni of $2.5\times10^{-2} M_\odot$, which is still well below the expected hypernova value. Longer simulations including the accretion disc evolution are required to get a final prediction. In addition, we have found that the late evolution is critical in a model with weak magnetic field in which late-ejected neutron-rich matter produces elements up to the second r-process peak. Even if we cannot yet provide conclusions for hypernova nucleosynthesis, our results agree with observations of old stars and radioactive isotopes in supernova remnants. This makes MR-SNe a good additional scenario to neutron star mergers for the synthesis of heavy elements and brings us closer to understand their origin and the role of MR-SNe in the early Galaxy nucleosynthesis.