论文标题

分解的判别分析,用于神经元表型的遗传特征

Factorized Discriminant Analysis for Genetic Signatures of Neuronal Phenotypes

论文作者

Qiao, Mu

论文摘要

导航单细胞转录组数据的复杂景观提出了重大挑战。这一挑战的核心是鉴定高维基因表达模式的有意义表示,该模式阐明了细胞类型的结构和功能特性。追求模型可解释性和计算简单性,我们经常寻找与细胞的关键表型特征对齐的原始数据的线性转换。为了响应这种需求,我们引入了分解的线性判别分析(FLDA),这是一种新型的线性维度降低方法。 FLDA的症结在于确定基因表达水平的线性功能,该功能与一种表型特征高度相关,同时最大程度地降低了他人的影响。为了增加此方法,我们将其与基于稀疏性的正则化算法集成在一起。这种整合至关重要,因为它选择了特定表型特征或其组合的基因的子集。为了说明FLDA的有效性,我们将其应用于果蝇光叶神经元的转录组数据集。我们证明,FLDA不仅捕获了与表型特征一致的固有结构模式,而且还发现了与每个表型相关的关键基因。

Navigating the complex landscape of single-cell transcriptomic data presents significant challenges. Central to this challenge is the identification of a meaningful representation of high-dimensional gene expression patterns that sheds light on the structural and functional properties of cell types. Pursuing model interpretability and computational simplicity, we often look for a linear transformation of the original data that aligns with key phenotypic features of cells. In response to this need, we introduce factorized linear discriminant analysis (FLDA), a novel method for linear dimensionality reduction. The crux of FLDA lies in identifying a linear function of gene expression levels that is highly correlated with one phenotypic feature while minimizing the influence of others. To augment this method, we integrate it with a sparsity-based regularization algorithm. This integration is crucial as it selects a subset of genes pivotal to a specific phenotypic feature or a combination thereof. To illustrate the effectiveness of FLDA, we apply it to transcriptomic datasets from neurons in the Drosophila optic lobe. We demonstrate that FLDA not only captures the inherent structural patterns aligned with phenotypic features but also uncovers key genes associated with each phenotype.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源