论文标题

蠕虫量子蒙特卡洛研究的扩展Jaynes-Cummings-Hubbard模型的相图

Worm quantum Monte-Carlo study of phase diagram of extended Jaynes-Cummings-Hubbard model

论文作者

Wei, Huanhuan, Zhang, Jie, Greschner, Sebastian, Scott, Tony C, Zhang, Wanzhou

论文摘要

在本文中,我们研究了大型蠕虫量子蒙特卡洛方法的扩展Jaynes-Cummings-Hubbard模型,以检查各种几何形状中是否存在轻度超固体相,例如一维链,平方晶格和三角形晶格。为了实现我们的目的,研究了基态相图。对于一维链和方格,在超氟相位和固相之间发生一阶转变,因此在这些几何形状中没有稳定的超级固相。有趣的是,如果在有限尺寸的链中调整化学电位,则会出现局部密度的孤子/节拍。但是,这种孤子共存的共存不能被视为热力学极限中的超固体。为了寻找浅色超固体,我们还研究了三角形晶格上的Jaynes-Cummings-Hubbard模型,并获得了相图。通过测量各种系统尺寸的结构因子,动量分布和超流体刚度,在三角形晶格几何形状中稳定存在超固体相,而超olid相的状态小于平均场结果的固体阶段。 Jaynes-Cummings-Hubbard模型中的光超固体很有吸引力,因为它具有超级稳态,这在纯Bose-Hubbard模型中不存在。我们认为本文的结果可以帮助搜索冷原子实验中的新新阶段

Herein, we study the extended Jaynes-Cummings-Hubbard model mainly by the large-scale worm quantum Monte-Carlo method to check whether or not a light supersolid phase exists in various geometries, such as the one-dimensional chain, square lattices and triangular lattices. To achieve our purpose, the ground state phase diagrams are investigated. For the one-dimensional chain and square lattices, a first-order transition occurs between the superfluid phase and the solid phase and therefore there is no stable supersolid phase existing in these geometries. Interestingly, soliton/beats of the local densities arise if the chemical potential is adjusted in the finite-size chain. However, this soliton-superfluid coexistence can not be considered as a supersolid in the thermodynamic limit. Searching for a light supersolid, we also studied the Jaynes-Cummings-Hubbard model on triangular lattices, and the phase diagrams are obtained. Through measurement of the structural factor, momentum distribution and superfluid stiffness for various system sizes, a supersolid phase exists stably in the triangular lattices geometry and the regime of the supersolid phase is smaller than that of the mean field results. The light supersolid in the Jaynes-Cummings-Hubbard model is attractive because it has superreliance, which is absent in the pure Bose-Hubbard model. We believe the results in this paper could help search for new novel phases in cold-atom experiments

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源