论文标题

计算大周长的超图

Counting Hypergraphs with Large Girth

论文作者

Spiro, Sam, Verstraëte, Jacques

论文摘要

莫里斯(Morris)和萨克斯顿(Saxton)使用容器的方法来绑定$ n $ vertex图的数量,其中包含$ \ ell $ -cycles的$ m $边缘,因此腰围的图形超过$ \ ell $。我们认为对$ r $均匀的超图的概括。超graph $ h $的{\ em girth}是最低$ \ ell $,因此对于某些$ f \ subseteq h $,存在Bookjection $ ϕ:e(c_ \ ell)\ to E(f)$,to E(f)$ a $ e \ e \ subseteq(e subSeteq(e)$ e(e)$ e(e)$ e(e)$ e e(e)in El(c_ \ el ell)$。让$ n_m^r(n,\ ell)$表示$ n $ -vertex $ r $ r $ r $均匀的超图的数量,带有$ m $边缘,大于$/ n_m^2(n,\ ell)^{r -1 +λ} \],当$ \ ell -2 $ 2 $ divides $ r -2 $ dist $ 1 + o(1)$(1)$(1)$(1)$(1)$(1)。该结果用于解决围绕腰围的极端问题,超过$ \ ell $在随机$ r $ r $均匀的超图中。

Morris and Saxton used the method of containers to bound the number of $n$-vertex graphs with $m$ edges containing no $\ell$-cycles, and hence graphs of girth more than $\ell$. We consider a generalization to $r$-uniform hypergraphs. The {\em girth} of a hypergraph $H$ is the minimum $\ell$ such that for some $F \subseteq H$, there exists a bijection $ϕ: E(C_\ell) \to E(F)$ with $e\subseteq ϕ(e)$ for all $e\in E(C_\ell)$. Letting $N_m^r(n,\ell)$ denote the number of $n$-vertex $r$-uniform hypergraphs with $m$ edges and girth larger than $\ell$ and defining $λ= \lceil (r - 2)/(\ell - 2)\rfloor$, we show \[ N_m^r(n,\ell) \leq N_m^2(n,\ell)^{r - 1 + λ}\] which is tight when $\ell - 2 $ divides $r - 2$ up to a $1 + o(1)$ term in the exponent. This result is used to address the extremal problem for subgraphs of girth more than $\ell$ in random $r$-uniform hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源