论文标题

矩阵模型II的穿刺和P型旋转曲线

Punctures and p-spin curves from matrix models II

论文作者

Hikami, S., Brezin, E.

论文摘要

我们在这里报告了以前的工作的扩展,其中我们已经证明矩阵模型提供了计算P-Spin曲线相交数量的工具。我们将进一步讨论到一半级P的扩展名,以及P = 1/2和P = 3/2的更多详细信息。在那些新情况下,人们发现Ramond部门的贡献,这些贡献不存在于正整数P. Virasoro约束的存在,尤其是弦乐方程,也被认为是半综合旋转的。通过对数基质模型进行了riemann表面边界的贡献,超对称随机矩阵为混合正和负P穿刺提供了扩展。

We report here an extension of a previous work in which we have shown that matrix models provide a tool to compute the intersection numbers of p-spin curves. We discuss further an extension to half-integer p, and in more details for p=1/2 and p=3/2. In those new cases one finds contributions from the Ramond sector, which were not present for positive integer p.The existence of Virasoro constraints, in particular a string equation, is considered also for half-integral spins. The contribution of the boundary of a Riemann surface, is investigated through a logarithmic matrix model The supersymmetric random matrices provide extensions to mixed positive and negative p punctures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源