论文标题

整体RICCI曲率的细分不平等和几乎刚性结构

Segment inequality and almost rigidity structures for integral Ricci curvature

论文作者

Chen, Lina

论文摘要

我们将显示具有积分RICCI曲率结合的流形的Cheeger-Colding段不等式。通过使用此片段不等式,积分RICCI曲率的几乎刚性结构的结果将通过与\ cite {cc1}中的类似方法得出。 \ cite {con}的尖锐的Hölder连续性结果保持在具有整体ricci曲率结合的歧管的极限空间中。

We will show the Cheeger-Colding segment inequality for manifolds with integral Ricci curvature bound. By using this segment inequality, the almost rigidity structure results for integral Ricci curvature will be derived by a similar method as in \cite{CC1}. And the sharp Hölder continuity result of \cite{CoN} holds in the limit space of manifolds with integral Ricci curvature bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源