论文标题
整体RICCI曲率的细分不平等和几乎刚性结构
Segment inequality and almost rigidity structures for integral Ricci curvature
论文作者
论文摘要
我们将显示具有积分RICCI曲率结合的流形的Cheeger-Colding段不等式。通过使用此片段不等式,积分RICCI曲率的几乎刚性结构的结果将通过与\ cite {cc1}中的类似方法得出。 \ cite {con}的尖锐的Hölder连续性结果保持在具有整体ricci曲率结合的歧管的极限空间中。
We will show the Cheeger-Colding segment inequality for manifolds with integral Ricci curvature bound. By using this segment inequality, the almost rigidity structure results for integral Ricci curvature will be derived by a similar method as in \cite{CC1}. And the sharp Hölder continuity result of \cite{CoN} holds in the limit space of manifolds with integral Ricci curvature bound.