论文标题

用于计算机视觉的全局自适应过滤层

Global Adaptive Filtering Layer for Computer Vision

论文作者

Shipitsin, Viktor, Bespalov, Iaroslav, Dylov, Dmitry V.

论文摘要

我们设计了一个通用的自适应神经层,以“学习”每个图像的最佳频率过滤器以及执行某些计算机视觉任务的基础神经网络的重量。所提出的方法将源图像在空间域中获取,自动从频域中选择最佳频率,并将反变形图像传输到主神经网络。值得注意的是,如此简单的附加层显着提高了主网络的性能,而不管其设计如何。我们观察到,光网络在性能指标上显着提高。而当我们的自适应层与主要体系结构一起“学习”时,对重型训练的训练会更​​快。我们在四个经典的计算机视觉任务任务中验证了这个想法:分类,细分,denoing和擦除,考虑到流行的自然和医学数据基准。

We devise a universal adaptive neural layer to "learn" optimal frequency filter for each image together with the weights of the base neural network that performs some computer vision task. The proposed approach takes the source image in the spatial domain, automatically selects the best frequencies from the frequency domain, and transmits the inverse-transform image to the main neural network. Remarkably, such a simple add-on layer dramatically improves the performance of the main network regardless of its design. We observe that the light networks gain a noticeable boost in the performance metrics; whereas, the training of the heavy ones converges faster when our adaptive layer is allowed to "learn" alongside the main architecture. We validate the idea in four classical computer vision tasks: classification, segmentation, denoising, and erasing, considering popular natural and medical data benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源