论文标题
解释具有可区分边掩模的NLP的图形神经网络
Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking
论文作者
论文摘要
图神经网络(GNN)已成为将结构电感偏见整合到NLP模型中的流行方法。但是,在解释它们方面几乎没有工作,特别是了解图的哪些部分(例如句法树或共同参考结构)有助于预测。在这项工作中,我们介绍了一种事后方法,用于解释GNN的预测,该预测标识了不必要的边缘。给定经过训练的GNN模型,我们学习了一个简单的分类器,对于每一层的每个边缘,可以预测该边缘是否可以删除。我们证明,这样的分类器可以通过随机大门进行训练,并通过预期的$ L_0 $ NORM训练稀疏。我们将技术用作一种归因方法来分析两个任务的GNN模型 - 问题回答和语义角色标签 - 提供了对这些模型中信息流的见解。我们表明,我们可以在不恶化模型的性能的情况下放置大部分边缘,而我们可以分析其余边缘来解释模型预测。
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models. However, there has been little work on interpreting them, and specifically on understanding which parts of the graphs (e.g. syntactic trees or co-reference structures) contribute to a prediction. In this work, we introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges. Given a trained GNN model, we learn a simple classifier that, for every edge in every layer, predicts if that edge can be dropped. We demonstrate that such a classifier can be trained in a fully differentiable fashion, employing stochastic gates and encouraging sparsity through the expected $L_0$ norm. We use our technique as an attribution method to analyze GNN models for two tasks -- question answering and semantic role labeling -- providing insights into the information flow in these models. We show that we can drop a large proportion of edges without deteriorating the performance of the model, while we can analyse the remaining edges for interpreting model predictions.