论文标题

任务不可知的持续学习使用带有固定点更新的在线变分贝叶斯

Task Agnostic Continual Learning Using Online Variational Bayes with Fixed-Point Updates

论文作者

Zeno, Chen, Golan, Itay, Hoffer, Elad, Soudry, Daniel

论文摘要

背景:灾难性遗忘是神经网络对学习过程中数据分布变化的臭名昭著的脆弱性。长期以来,这种现象一直被认为是在现实的持续学习环境中使用学习代理的主要障碍。大量持续学习研究假设任务边界是在培训期间已知的。但是,只有少数作品考虑了在任务边界未知或不当定义的方案 - 任务不可知的方案。为此,最佳的贝叶斯解决方案需要对重量后部的棘手的在线贝叶斯更新。贡献:我们旨在尽可能准确地近似在线贝叶斯更新。为此,我们为多元高斯参数分布提供了新颖的定点方程,以解决在线变分贝叶斯优化问题。通过通过这些固定点方程迭代后验,我们获得了一种用于连续学习的算法(foo-vb),该算法可以使用固定的体系结构来处理非平稳数据分布,而无需使用外部内存(即无需访问以前的数据)。我们证明,我们的方法(FOO-VB)在任务不可知的方案中优于现有方法。 Foo-VB Pytorch实施将在线提供。

Background: Catastrophic forgetting is the notorious vulnerability of neural networks to the changes in the data distribution during learning. This phenomenon has long been considered a major obstacle for using learning agents in realistic continual learning settings. A large body of continual learning research assumes that task boundaries are known during training. However, only a few works consider scenarios in which task boundaries are unknown or not well defined -- task agnostic scenarios. The optimal Bayesian solution for this requires an intractable online Bayes update to the weights posterior. Contributions: We aim to approximate the online Bayes update as accurately as possible. To do so, we derive novel fixed-point equations for the online variational Bayes optimization problem, for multivariate Gaussian parametric distributions. By iterating the posterior through these fixed-point equations, we obtain an algorithm (FOO-VB) for continual learning which can handle non-stationary data distribution using a fixed architecture and without using external memory (i.e. without access to previous data). We demonstrate that our method (FOO-VB) outperforms existing methods in task agnostic scenarios. FOO-VB Pytorch implementation will be available online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源