论文标题

一致性不变和Turaev属

Concordance invariants and the Turaev genus

论文作者

Jung, Hongtaek, Kang, Sungkyung, Kim, Seungwon

论文摘要

我们表明,各种一致性的结之间的差异,包括拉斯穆森的$ s $ invariant及其概括$ s_n $ invariants,给了Turaev of turaev。利用我们的边界对于某些准偏斜的结是非凡的事实,我们显示了Turaev Genus在某种类别的结中的添加性。这使我们成为了一个无限的准倾向结家族的第一个例子,其中包括任何固定的正整数$ g $,恰好是$ g $,解决了Champanerkar-Kofman的问题。

We show that the differences between various concordance invariants of knots, including Rasmussen's $s$-invariant and its generalizations $s_n$-invariants, give lower bounds to the Turaev genus of knots. Using the fact that our bounds are nontrivial for some quasi-alternating knots, we show the additivity of Turaev genus for a certain class of knots. This leads us to the first example of an infinite family of quasi-alternating knots with Turaev genus exactly $g$ for any fixed positive integer $g$, solving a question of Champanerkar-Kofman.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源