论文标题
维度为2
Acylindrical hyperbolicity for Artin groups of dimension 2
论文作者
论文摘要
在本文中,我们表明,每个不可约2美元的$ 2 $维度Artin Group $a_γ$排名至少3美元是酰基偶然的双曲线。我们通过研究$a_γ$在其修改后的Deligne综合体中的动作来做到这一点。一路上,我们证明了对该复合物联系的几何形状的独立兴趣的结果。
In this paper, we show that every irreducible $2$-dimensional Artin group $A_Γ$ of rank at least $3$ is acylindrically hyperbolic. We do this by studying the action of $A_Γ$ on its modified Deligne complex. Along the way, we prove results of independent interests on the geometry of links of this complex.