论文标题

Riemann Zeta功能沿其朱莉娅线的价值分布

Value-Distribution of the Riemann Zeta-Function along its Julia Lines

论文作者

Steuding, Jörn, Suriajaya, Ade Irma

论文摘要

对于任意的复杂数字$ a \ neq 0 $,我们考虑在函数方程式$ζ(s)=δ(s)ζ(1-s)$的功能$δ$的$ a $ points $ a $ a-points的riemann zeta-function $ζ$的值分布。这些$ a $ points $δ_a$聚集在关键行$ 1/2+i \ i \ mathbb {r} $上,这恰好是Infinity $ζ$的朱莉娅奇异行。我们观察到值$ζ(Δ_A)$的序列的平均行为显着。

For an arbitrary complex number $a\neq 0$ we consider the distribution of values of the Riemann zeta-function $ζ$ at the $a$-points of the function $Δ$ which appears in the functional equation $ζ(s)=Δ(s)ζ(1-s)$. These $a$-points $δ_a$ are clustered around the critical line $1/2+i\mathbb{R}$ which happens to be a Julia line for the essential singularity of $ζ$ at infinity. We observe a remarkable average behaviour for the sequence of values $ζ(δ_a)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源