论文标题

医疗保健的简单且可解释的预测模型

A Simple and Interpretable Predictive Model for Healthcare

论文作者

Maji, Subhadip, Bali, Raghav, Ankem, Sree Harsha, Ayyadevara, Kishore V

论文摘要

基于深度学习的模型目前主要主导着大多数最新的疾病预测解决方案。现有作品采用RNN以及多种关注机制来提供可解释性。这些深度学习模型,具有可训练的参数为数百万,需要大量的计算和数据才能训练和部署。这些要求有时是如此巨大,以至于它们使这些模型不可行。我们通过开发一个更简单但可解释的非深度学习模型来解决这些挑战,以应用于EHR数据。我们对工作的结果进行建模和展示,即预测首次出现诊断的任务,这在现有作品中经常被忽略。我们推动基于树模型的功能,并为更复杂的模型提供了强大的基线。它的性能均显示出对基于深度学习的解决方案的改进(无论是,还是没有第一出现限制),同时保持可解释性。

Deep Learning based models are currently dominating most state-of-the-art solutions for disease prediction. Existing works employ RNNs along with multiple levels of attention mechanisms to provide interpretability. These deep learning models, with trainable parameters running into millions, require huge amounts of compute and data to train and deploy. These requirements are sometimes so huge that they render usage of such models as unfeasible. We address these challenges by developing a simpler yet interpretable non-deep learning based model for application to EHR data. We model and showcase our work's results on the task of predicting first occurrence of a diagnosis, often overlooked in existing works. We push the capabilities of a tree based model and come up with a strong baseline for more sophisticated models. Its performance shows an improvement over deep learning based solutions (both, with and without the first-occurrence constraint) all the while maintaining interpretability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源