论文标题

通过空地综合联邦学习来赋予边缘智能

Empowering the Edge Intelligence by Air-Ground Integrated Federated Learning

论文作者

Qu, Yuben, Dong, Chao, Zheng, Jianchao, Dai, Haipeng, Wu, Fan, Guo, Song, Anpalagan, Alagan

论文摘要

无处不在的情报已被广泛认为是对未来第六代(6G)网络的批判性愿景,这意味着从核心到边缘(包括最终设备)的整个网络上的智能。然而,由于边缘设备的资源有限以及6G设想的无处不在的覆盖范围,实现这种愿景,尤其是边缘的情报,这是极具挑战性的。为了赋予边缘智能的能力,在本文中,我们提出了一个名为Agifl的新颖框架(空中集成联合学习),该框架有机地集成了空中集成网络和联合学习(FL)。在AGIFL中,利用空中节点(例如无人驾驶汽车(UAV))的灵活的按需3D部署,所有节点都可以通过FL协作训练有效的学习模型。我们还进行了一项案例研究,以评估UAV的两种不同部署方案对学习和网络性能的影响。最后但并非最不重要的一点是,我们重点介绍了AGIFL中的一些技术挑战和未来的研究指示。

Ubiquitous intelligence has been widely recognized as a critical vision of the future sixth generation (6G) networks, which implies the intelligence over the whole network from the core to the edge including end devices. Nevertheless, fulfilling such vision, particularly the intelligence at the edge, is extremely challenging, due to the limited resources of edge devices as well as the ubiquitous coverage envisioned by 6G. To empower the edge intelligence, in this article, we propose a novel framework called AGIFL (Air-Ground Integrated Federated Learning), which organically integrates air-ground integrated networks and federated learning (FL). In the AGIFL, leveraging the flexible on-demand 3D deployment of aerial nodes such as unmanned aerial vehicles (UAVs), all the nodes can collaboratively train an effective learning model by FL. We also conduct a case study to evaluate the effect of two different deployment schemes of the UAV over the learning and network performance. Last but not the least, we highlight several technical challenges and future research directions in the AGIFL.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源