论文标题

在任意依赖下合并P值的有效性和效率之间的权衡

Trade-off between validity and efficiency of merging p-values under arbitrary dependence

论文作者

Chen, Yuyu, Liu, Peng, Tan, Ken Seng, Wang, Ruodu

论文摘要

将单个P值组合为一个P值的各种方法广泛用于统计应用的许多领域。我们说,组合方法对于任意依赖性(VAD)有效,如果它不需要对p值的依赖性结构进行任何假设,而如果它需要某些特定但可能是现实但不合理但不合理的,依赖性结构,则对某些依赖性(VSD)有效。通过分析不同依赖性假设下的临界值的选择,研究了这些方法的有效性和效率之间的权衡。我们介绍了独立 - 传统性平衡(IC-BALANCE)的概念和有效性的价格。特别是,IC平衡的方法始终为独立且完全依赖的P值产生相同的临界价值,这是对依赖性假设家族的特定类型的不敏感性。我们表明,在实践中常用的两种非常通用的合并方法中,凯奇组合方法和模拟方法是唯一的IC平衡方法。进行了模拟研究和实际数据分析,以分析存在弱和强依赖性的各种组合方法的大小和功率。

Various methods of combining individual p-values into one p-value are widely used in many areas of statistical applications. We say that a combining method is valid for arbitrary dependence (VAD) if it does not require any assumption on the dependence structure of the p-values, whereas it is valid for some dependence (VSD) if it requires some specific, perhaps realistic but unjustifiable, dependence structures. The trade-off between validity and efficiency of these methods is studied via analyzing the choices of critical values under different dependence assumptions. We introduce the notions of independence-comonotonicity balance (IC-balance) and the price for validity. In particular, IC-balanced methods always produce an identical critical value for independent and perfectly positively dependent p-values, a specific type of insensitivity to a family of dependence assumptions. We show that, among two very general classes of merging methods commonly used in practice, the Cauchy combination method and the Simes method are the only IC-balanced ones. Simulation studies and a real data analysis are conducted to analyze the sizes and powers of various combining methods in the presence of weak and strong dependence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源