论文标题

关于布尔功能的仿射等效类别的数量

On the Number of Affine Equivalence Classes of Boolean Functions

论文作者

Hou, Xiang-dong

论文摘要

令$ r(r,n)$为$ r $ th订单reed-muller长度$ 2^n $的代码。仿射线性组$ \ text {agl}(n,\ bbb f_2)$自然作用于$ r(r,n)$。我们得出了有关此操作轨道数量的两个公式:(i)$ r(n,n)$的AGL轨道数量的明确公式,以及(ii)$ r(n,n)/r(n)/r(1,n)$的agl轨道数量的渐近公式。 $ r(n,n)$的AGL轨道数量已由几位作者计算为$ n \ le 10 $;结果(i)是问题的理论解决方案。结果(ii)回答了麦克维利亚姆斯和斯隆的问题。

Let $R(r,n)$ be the $r$th order Reed-Muller code of length $2^n$. The affine linear group $\text{AGL}(n,\Bbb F_2)$ acts naturally on $R(r,n)$. We derive two formulas concerning the number of orbits of this action: (i) an explicit formula for the number of AGL orbits of $R(n,n)$, and (ii) an asymptotic formula for the number of AGL orbits of $R(n,n)/R(1,n)$. The number of AGL orbits of $R(n,n)$ has been numerically computed by several authors for $n\le 10$; result (i) is a theoretic solution to the question. Result (ii) answers a question by MacWilliams and Sloane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源