论文标题

基于功能的顺序分类器与注意机制

Feature based Sequential Classifier with Attention Mechanism

论文作者

Sornapudi, Sudhir, Stanley, R. Joe, Stoecker, William V., Long, Rodney, Xue, Zhiyun, Zuna, Rosemary, Frazier, Shelliane R., Antani, Sameer

论文摘要

宫颈癌是影响全球女性的最致命的癌症之一。宫颈内肿瘤(CIN)使用宫颈活检载玻片的组织病理学检查评估(CIN)。数字化组织病理学幻灯片的自动加工有可能对CIN等级进行更准确的分类,从正常到现象前的预防级别:CIN1,CIN2和CIN3。子宫颈疾病通常被认为是从底部(地下膜)到上皮顶部的进展。为了模拟疾病严重程度与异常空间分布的这种关系,我们提出了一条网络管道,深霉素,以分析高分辨率上皮图像(从全坡度图像中手动提取),通过关注局部垂直区域并融合局部垂直区域并融合此局部信息来确定正常/CIN/CIN/CIN分类。管道包含两个分类器网络:1)使用弱监督训练了横截面的垂直段级级序列发生器(两阶段编码器模型),以生成垂直段中的特征序列,以保留上皮图像数据中的羽绒特征关系; 2)基于注意力的融合网络图像级分类器通过合并垂直段序列来预测最终CIN等级。该模型产生CIN分类结果,还确定了CIN等级预测的垂直段贡献。实验表明,Deepcin达到病理学家级的CIN分类精度。

Cervical cancer is one of the deadliest cancers affecting women globally. Cervical intraepithelial neoplasia (CIN) assessment using histopathological examination of cervical biopsy slides is subject to interobserver variability. Automated processing of digitized histopathology slides has the potential for more accurate classification for CIN grades from normal to increasing grades of pre-malignancy: CIN1, CIN2 and CIN3. Cervix disease is generally understood to progress from the bottom (basement membrane) to the top of the epithelium. To model this relationship of disease severity to spatial distribution of abnormalities, we propose a network pipeline, DeepCIN, to analyze high-resolution epithelium images (manually extracted from whole-slide images) hierarchically by focusing on localized vertical regions and fusing this local information for determining Normal/CIN classification. The pipeline contains two classifier networks: 1) a cross-sectional, vertical segment-level sequence generator (two-stage encoder model) is trained using weak supervision to generate feature sequences from the vertical segments to preserve the bottom-to-top feature relationships in the epithelium image data; 2) an attention-based fusion network image-level classifier predicting the final CIN grade by merging vertical segment sequences. The model produces the CIN classification results and also determines the vertical segment contributions to CIN grade prediction. Experiments show that DeepCIN achieves pathologist-level CIN classification accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源