论文标题

与补充资源的匹配的计算能力

Computational power of matchgates with supplementary resources

论文作者

Hebenstreit, Martin, Jozsa, Richard, Kraus, Barbara, Strelchuk, Sergii

论文摘要

我们研究了弱感官和强感,对匹配和强感的经典模拟复杂性,这些计算补充了涉及中间自适应或非适应性计算基础测量的所有设置组合,产品状态或魔术以及一般纠缠状态输入以及单线或多线输出。在资源重新品牌之后,我们发现Clifford电路的已知结果平行。在访问中间测量和纠缠输入的情况下,我们还提供了所需的经典模拟工作量的界限。在进一步的设置中,我们表明自适应MG电路如果允许在连续的线上进行任意的两量纠缠输入状态,则可以在经典上有效地模拟,但在三个或更多行中成为量子通用。而且,如果允许在非计算基础中进行自适应测量,即使仅使用计算基础输入,我们也会再次获得量子通用能力。

We study the classical simulation complexity in both the weak and strong senses, of matchgate (MG) computations supplemented with all combinations of settings involving inclusion of intermediate adaptive or nonadaptive computational basis measurements, product state or magic and general entangled state inputs, and single- or multi-line outputs. We find a striking parallel to known results for Clifford circuits, after some rebranding of resources. We also give bounds on the amount of classical simulation effort required in case of limited access intermediate measurements and entangled inputs. In further settings we show that adaptive MG circuits remain classically efficiently simulable if arbitrary two-qubit entangled input states on consecutive lines are allowed, but become quantum universal for three or more lines. And if adaptive measurements in non-computational bases are allowed, even with just computational basis inputs, we get quantum universal power again.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源