论文标题

(非)产品的分布$σ$ - 代数相对于交叉

(Non-)Distributivity of the Product for $σ$-Algebras with Respect to the Intersection

论文作者

Steinicke, Alexander

论文摘要

我们研究分布式方程的有效性$(\ Mathcal {a} \ otimes \ Mathcal {f})\ cap(\ Mathcal {a} \ otimes \ Mathcal {g})= \ Mathcal {A} a} \ ot { $ \ MATHCAL {a} $是$ x $上的$σ$ -Algebra,而$ \ Mathcal {f},\ Mathcal {G} $是$ u $上的$σ$ -Salgebras。我们提出了一般情况的反例,在分析可测量空间的子空间的情况下,我们就$σ$ -SALGEBRAS的原子提供了等效条件。使用此功能,我们提供了足够的条件,在该条件下保持。

We study the validity of the distributivity equation $$(\mathcal{A}\otimes\mathcal{F})\cap(\mathcal{A}\otimes\mathcal{G})=\mathcal{A}\otimes\left(\mathcal{F}\cap\mathcal{G}\right),$$ where $\mathcal{A}$ is a $σ$-algebra on a set $X$, and $\mathcal{F}, \mathcal{G}$ are $σ$-algebras on a set $U$. We present a counterexample for the general case and in the case of countably generated subspaces of analytic measurable spaces we give an equivalent condition in terms of the $σ$-algebras' atoms. Using this, we give a sufficient condition under which distributivity holds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源