论文标题

除数总和的算术特性

Arithmetic properties of the sum of divisors

论文作者

Amdeberhan, Tewodros, Moll, Victor H., Sharma, Vaishavi, Villamizar, Diego

论文摘要

除数函数$σ(n)$表示正整数$ n $的除数的总和。对于Prime $ P $和$ M \ in \ Mathbb {n} $,$ P $ -M $的$ P $ ADIC估值是$ P $的最高功率,该功率将$ m $划分为$ m $。建立了$ν_{p}(σ(n))$的公式。对于$ p = 2 $,这些仅涉及划分$ n $的奇数。 These expressions are used to establish the bound $ν_{2}(σ(n)) \leq \lceil\log_{2}(n) \rceil$, with equality if and only if $n$ is the product of distinct Mersenne primes, and for an odd prime $p$, the bound is $ν_{p}(σ(n)) \leq \lceil \ log_ {p}(n)\ rceil $,具有与ljunggren-nagell diophantine方程解决方案有关的平等。

The divisor function $σ(n)$ denotes the sum of the divisors of the positive integer $n$. For a prime $p$ and $m \in \mathbb{N}$, the $p$-adic valuation of $m$ is the highest power of $p$ which divides $m$. Formulas for $ν_{p}(σ(n))$ are established. For $p=2$, these involve only the odd primes dividing $n$. These expressions are used to establish the bound $ν_{2}(σ(n)) \leq \lceil\log_{2}(n) \rceil$, with equality if and only if $n$ is the product of distinct Mersenne primes, and for an odd prime $p$, the bound is $ν_{p}(σ(n)) \leq \lceil \log_{p}(n) \rceil$, with equality related to solutions of the Ljunggren-Nagell diophantine equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源