论文标题
多物种tasep中的决定性表达式
Determinantal Expressions in Multi-Species TASEP
论文作者
论文摘要
考虑一个不均匀的多物种tasep,向左漂移,并定义一个高度功能,该高度等于最大物种数量,而物种数量与晶格位点的左侧。对于每个固定时间,这些高度函数的多点分布都有确定性结构。在同质情况下,在某些初始条件下,高度函数的波动会在大时限内收敛到高斯随机变量。该证明利用多物种的tasep和一个合并的随机步行之间的耦合,并且以前已知的结果是合并的随机步行。
Consider an inhomogeneous multi-species TASEP with drift to the left, and define a height function which equals the maximum species number to the left of a lattice site. For each fixed time, the multi-point distributions of these height functions have a determinantal structure. In the homogeneous case and for certain initial conditions, the fluctuations of the height function converge to Gaussian random variables in the large-time limit. The proof utilizes a coupling between the multi-species TASEP and a coalescing random walk, and previously known results for coalescing random walks.