论文标题
梯度起源网络
Gradient Origin Networks
论文作者
论文摘要
本文提出了一种新型的生成模型,该模型能够在没有编码器的情况下快速学习潜在表示。这是使用经验贝叶斯来计算后验的期望来实现的,后者是通过用零来初始初始化潜在向量的,然后将数据类似于该零向量作为新的潜在点的log-fikelihoos的梯度。该方法具有与自动编码器相似的特征,但具有更简单的体系结构,并且在允许采样的变异自动编码器等效物中进行了证明。这还允许隐式表示网络学习隐式函数的空间,而无需超级net工作,保留其在数据集中的表示优势。实验表明,所提出的方法收敛的速度更快,重建误差明显低于自动编码器,同时需要一半的参数。
This paper proposes a new type of generative model that is able to quickly learn a latent representation without an encoder. This is achieved using empirical Bayes to calculate the expectation of the posterior, which is implemented by initialising a latent vector with zeros, then using the gradient of the log-likelihood of the data with respect to this zero vector as new latent points. The approach has similar characteristics to autoencoders, but with a simpler architecture, and is demonstrated in a variational autoencoder equivalent that permits sampling. This also allows implicit representation networks to learn a space of implicit functions without requiring a hypernetwork, retaining their representation advantages across datasets. The experiments show that the proposed method converges faster, with significantly lower reconstruction error than autoencoders, while requiring half the parameters.