论文标题
有效的缓慢适应MM波变化的通道中的大规模MIMO混合型杂交边界
An Efficient Slow-Time Adaptation for Massive MIMO Hybrid Beamforming in mm-Wave Time-Varying Channels
论文作者
论文摘要
在本文中,为毫米波范围提出了自适应杂交边缘方法,该方法大量多输入 - 多输出输出(MIMO)系统考虑了在上行链路数据模式下单个载波宽带传输的系统。统计模拟波束形式以缓慢的时间进行自适应构建,而通道是随时间变化且错误估计的。提出了一种递归滤波方法,该方法的目的是鲁棒性,以抵抗广义特征甲形象(GEB)的估计错误。获得近似表达式的通道协方差矩阵,该矩阵将角散布和多径成分的中心角度分离。使用这些表达式,提出了修改的GEB自适应构造方法,仅在角斑块上使用量化的估计功率水平。根据输出信号到分流和噪声比例(SINR),瞬时通道估计和梁精度,评估了统计大规模MIMO光束的较慢适应技术的性能。它们被证明非常有效,因此计算复杂性大大降低,而性能仍然与理想GEB的性能几乎相同,即使在大角度估计误差中也是如此。
In this paper, adaptive hybrid beamforming methods are proposed for millimeter-wave range massive multiple-input-multiple-output (MIMO) systems considering single carrier wideband transmission in uplink data mode. A statistical analog beamformer is adaptively constructed in slow-time, while the channel is time-varying and erroneously estimated. A recursive filtering approach is proposed, which aims robustness against estimation errors for generalized eigen-beamformer (GEB). Approximated expressions are obtained for channel covariance matrices that decouple angular spread and center angle of multipath components. With these expressions, modified adaptive construction methods for GEB are proposed, which use only the quantized estimated power levels on angular patches. The performances of the proposed slow-time adaptation techniques for statistical Massive MIMO beamforming are evaluated in terms of the output signal-to-interference-and-noise-ratio (SINR), instantaneous channel estimation and beam accuracy. They are shown to be very efficient such that the computational complexity is significantly reduced while the performance remains almost the same as that of the ideal GEB even in large angular estimation errors.