论文标题
分解的部分动作
Decomposable partial actions
论文作者
论文摘要
我们为离散组在$ C^*$ - 代数上的部分操作定义了分解属性。可分解的部分系统在实践中自然而然,并且许多常见发生的部分动作可以分解为分解属性的部分作用。例如,有限组的任何部分动作都是可分解系统的迭代扩展。 与分解属性的部分作用始终是全球化的,无论代理群体如何,都可以通过某些全球子系统来明确描述其全球化。还进行了交叉产品的直接计算。我们表明,分解属性的部分行动在许多方面都以有限群体的全球行动(即使表演组是无限的)行为,这使他们的研究变得特别易于访问。例如,存在着对固定点代数的规范忠实的有条件期望,而固定点代数也以自然方式在交叉产品中的角落。 (这两个事实通常对于有限群体的部分作用都是错误的。)作为一种应用,我们表明,具有分解属性的拓扑部分作用的烦恼等同于其固定点代数等于其交叉产品。我们还通过示例表明,这对于有限群体的一般部分行动失败了。
We define the decomposition property for partial actions of discrete groups on $C^*$-algebras. Decomposable partial systems appear naturally in practice, and many commonly occurring partial actions can be decomposed into partial actions with the decomposition property. For instance, any partial action of a finite group is an iterated extension of decomposable systems. Partial actions with the decomposition property are always globalizable and amenable, regardless of the acting group, and their globalization can be explicitly described in terms of certain global sub-systems. A direct computation of their crossed products is also carried out. We show that partial actions with the decomposition property behave in many ways like global actions of finite groups (even when the acting group is infinite), which makes their study particularly accessible. For example, there exists a canonical faithful conditional expectation onto the fixed point algebra, which is moreover a corner in the crossed product in a natural way. (Both of these facts are in general false for partial actions of finite groups.) As an application, we show that freeness of a topological partial action with the decomposition property is equivalent to its fixed point algebra being Morita equivalent to its crossed product. We also show by example that this fails for general partial actions of finite groups.