论文标题
渐近锥形自扩展器的山通定理
A mountain-pass theorem for asymptotically conical self-expanders
论文作者
论文摘要
我们为平均曲率流的渐近锥形自扩散者开发了最小的最大理论。特别是,我们表明,鉴于两个不同的严格稳定的自我膨胀者,它们渐近地与同一锥体并绑定了一个结构域,存在着一个被困在两者之间的新的渐近锥形自我expander。
We develop a min-max theory for asymptotically conical self-expanders of mean curvature flow. In particular, we show that given two distinct strictly stable self-expanders that are asymptotic to the same cone and bound a domain, there exists a new asymptotically conical self-expander trapped between the two.