论文标题

关于理论和建模在神经科学中的作用

On the role of theory and modeling in neuroscience

论文作者

Levenstein, Daniel, Alvarez, Veronica A., Amarasingham, Asohan, Azab, Habiba, Chen, Zhe Sage, Gerkin, Richard C., Hasenstaub, Andrea, Iyer, Ramakrishnan, Jolivet, Renaud B., Marzen, Sarah, Monaco, Joseph D., Prinz, Astrid A., Quraishi, Salma, Santamaria, Fidel, Shivkumar, Sabyasachi, Singh, Matthew F., Traub, Roger, Rotstein, Horacio G., Nadim, Farzan, Redish, A. David

论文摘要

近年来,神经科学领域经历了快速的实验进步,并大幅增加了定量和计算方法的使用。这种增长使人们需要对现场使用的理论和建模方法进行更清晰的分析。这个问题在神经科学中尤其复杂,因为从精确的生物物理相互作用到它们实施的计算,田间研究现象通常需要以不同程度的抽象来考虑这些现象。我们认为,描述性,机械和规范方法的科学的务实观点在定义和桥接抽象水平中起着独特的作用,将促进神经科学实践。该分析导致方法论上的建议,包括选择适合给定问题的抽象水平,识别传输功能以连接模型和数据,以及将模型本身作为实验形式的使用。

In recent years, the field of neuroscience has gone through rapid experimental advances and a significant increase in the use of quantitative and computational methods. This growth has created a need for clearer analyses of the theory and modeling approaches used in the field. This issue is particularly complex in neuroscience because the field studies phenomena across a wide range of scales and often requires consideration of these phenomena at varying degrees of abstraction, from precise biophysical interactions to the computations they implement. We argue that a pragmatic perspective of science, in which descriptive, mechanistic, and normative approaches each play a distinct role in defining and bridging levels of abstraction will facilitate neuroscientific practice. This analysis leads to methodological suggestions, including selecting a level of abstraction that is appropriate for a given problem, identifying transfer functions to connect models and data, and the use of models themselves as a form of experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源